
LSST DESC Coding Guidelines
The Computing (CO, formally Computing Infrastructure or CI) Working Group, February,
2018; most recently updated in July, 2022
Contributions from: Phil Marshall, Mike Jarvis, Rachel Mandelbaum, Yao-Yuan Mao, Mike
Wang, Seth Digel, Andy Connolly, Matthew R Becker, Johann Cohen-Tanugi, Heather Kelly,
Francois Lanusse, Joanne Bogart

Contents
Introduction

Guidelines for Coders
Getting Started
Software Packaging and Licensing
Coding Style
Documentation
Commits
Tests
Contributing Your Work

Guidelines for Code Reviewers
Who should review?
Questions to ask
What happens after the review?
Comprehensive Code Reviews
Further Reading

Guidelines for Coding Teams
Things to think about
Versioning

Appendix
Other References
Comprehensive code review process

The LSST DESC Coding Guidelines is licensed for re-use according to Creative Commons
CCBY 4.0 with appropriate credit. You can view a copy of this license at
https://creativecommons.org/licenses/by/4.0/. To help track people’s
improvements and best practice, please acknowledge “LSST DESC Coding Guidelines”
when re-using this document.

1

Introduction
We develop a lot of code collaboratively, in collaboration-wide (and often public) repositories,
for a wide range of applications (including cosmology analysis, LSST Science Pipeline
image processing and feature measurement, large scale data challenge simulation and so
on).

The way in which we develop code should make us more nimble, not less, and so these
guidelines are kept purposely minimal; however, we are also striving to produce high-quality
code that enables a high level of scientific reproducibility, so we need at least some
structure.

Ideally, you should find it easy to start contributing to an existing piece of LSST DESC code
or to contribute new code and make it usable by anyone in the collaboration. Adopting some
lightweight standards helps with that.

This short document gives some simple guidelines to follow when writing and reviewing code
in the DESC. Specifically, we are talking about any piece of code that will be used in some
capacity in a DESC paper. This is a dynamic document that the collaboration will develop
over time. There is also a longer and more comprehensive document produced by the CI2
study group (accessible only to DESC members), some aspects of which have been
superseded by this document and the DESC software policy.

In this document, we’re only talking about DESC Tools and Analysis software (like DESCQA
and CCL), but you might nonetheless find that getting in the habit of writing your personal
experimental code to the same standards is helpful when contributing to collaboration code
later.

Guidelines for Coders

Getting Started
● LSST DESC has a GitHub organization that all members should automatically have

access to if they have added their GitHub ID to the membership database
(accessible only to DESC members). Look for a repository (repo) corresponding to
the project you are interested in. There are many useful tips for how to effectively
use the DESC’s GitHub organization, manage teams, etc. here (accessible only to
DESC members).

● When starting a new GitHub repo in the LSSTDESC organization, the first decision is
whether to make it “private” or “public”. “Private” repos can be viewed only by the
admins/creators until they add GitHub teams to the repo with read or write access;
private repos are not accessible by anyone with the link. “Public” repos can be
viewed by anyone on the web. In both cases, “Write” (or “Push”) permissions can be

2

https://github.com/LSSTDESC/ComputingModel/tree/master/Reports/ci2
https://github.com/LSSTDESC/ComputingModel/tree/master/Reports/ci2
https://lsstdesc.org/assets/pdf/policies/LSST_DESC_Software_Policy_Nov2021.pdf
https://github.com/LSSTDESC/descqa
https://github.com/LSSTDESC/CCL
https://github.com/LSSTDESC
https://confluence.slac.stanford.edu/display/LSSTDESC/Automatic+Maintenance+of+GitHub+Teams
https://confluence.slac.stanford.edu/display/LSSTDESC/GitHub+Tips

granted on a team-by-team basis by the repo admins. We encourage people to
develop software in the open, in public repos. Open software is beneficial because it
allows others to learn, improve, re-use, and contribute to the code. However, we
understand that some members of the collaboration may be uncomfortable with this
approach. At minimum, we strongly recommend that DESC code should be shared
within the collaboration: this can be achieved by using a private repo that has the
Members or Full Members team added with Read permissions. (Note that adding
them all with Write permissions will auto-subscribe them as watchers of the
repository, which requires them to take action to avoid getting notifications. For this
reason, it is worth creating a GitHub team for the team of developers (dev team) and
giving that team Write access.)

● For new projects consider using the LSSTDESC/gcr-catalogs repo as a starting
point, which includes examples such as setting up GitHub Actions and a BSD
license. You can also look at the LSSTDESC/Coord package which is a very
lightweight package you might model yours after. (For instance, it includes
instructions on how to get Sphinx documentation working with github.io and notes on
how to make your package pip installable.)

● For those who are setting up a repo for a new code base, you may find it useful to
first check out some tips on GitHub usage (accessible only to DESC members).
There is also guidance about information to put in the README and licensing here
(accessible only to DESC members).

● Most projects use issues or tickets to track code development. If you’d like to start
contributing, you should look through these and pick one that you think you might like
to tackle. Comment on the issue to propose the work you’d like to do. Feel free to
ask questions or ask for advice about how to proceed.

● Or alternatively, maybe you have an idea for a feature or improvement that is not
currently an issue. Go ahead and open a new issue.

● This is a social coding environment. People want to help you succeed. Keep talking.
● If you have technical trouble (e.g, working with git or setting up continuous

integration), you can ask for help on the #desc-github-help or #desc-software-help
Slack channels respectively.

● The DESC software policy describes DESC members’ responsibilities to ensure
robust collaborative software development.

Software Packaging and Licensing
Please see the DESC repository guidelines (accessible only to DESC members) in addition
to notes below.

● All DESC software should carry a BSD-3-Clause license (as noted in the
above-linked repository guidelines) when at all possible. If your package includes
code from some other code base, please make sure it is attributed and licensed
properly. For example, if you are using code licensed under GPL, then your package
must be GPL as well.

● Try to take advantage of the existing tooling in your language for software packaging.
For example, it is worth making a serious effort to ensure that all Python packages

3

https://github.com/lsstdesc/gcr-catalogs
https://github.com/LSSTDESC/Coord
https://github.com/LSSTDESC/Coord/blob/master/docs/README
https://github.com/LSSTDESC/Coord/blob/master/notes.txt
https://confluence.slac.stanford.edu/display/LSSTDESC/GitHub+Tips
https://confluence.slac.stanford.edu/display/LSSTDESC/Publication+Board?preview=/215859451/257625956/Guidelines%20for%20DESC%20Repositories%20v2.pdf
https://lsstdesc.org/assets/pdf/policies/LSST_DESC_Software_Policy_Nov2021.pdf
https://confluence.slac.stanford.edu/download/attachments/215859451/Guidelines%20for%20DESC%20Repositories.pdf?version=1&modificationDate=1528306924000&api=v2
https://opensource.org/licenses/BSD-3-Clause

are pip installable and use setuptools. Mature packages released publicly should be
submitted to pypi or conda-forge. If a Python package has difficult binary
dependencies, e.g. CCL with CLASS, then please consider making a conda-forge
recipe to enable distribution via conda.

● For packages in C/C++ please use a Makefile, autotools, Scons, or cmake. Further,
these kinds of packages typically have compiler-dependent settings that need to be
determined at build time. Autotools and cmake will do this for you when used
properly. If you do want a simple Makefile, make sure to respect the standard
environment variables for compilers and flags such as CC, CFLAGS etc.

● Please think about the distinction between libraries and applications when deciding
on dependencies and their version for your code. For example, if your Python
package lists “numpy==1.12.4” in its installation requirements, then it won’t be able to
be easily co-installed with other software. Fully specified dependencies like this are
only appropriate for applications meant to be installed and used in production by end
users. In the vast majority of cases, we write libraries and our dependencies should
reflect that. Use liberal constraints, like fixing only the major version “numpy
>=1.11.0,<2”, or ideally none at all! Pip has the operator “~=” which can be useful
here.

● Reproducibility is not an excuse to fully fix your dependencies. If your package gives
a different answer on a numpy minor version change, then you are probably doing
something you shouldn’t be. Further, end users can use tools like Docker and conda
to make reproducible environments if they need them.

Coding Style
● Suggestions are PEP 8 for Python and one of Google, Sutter & Stroustrup, or

LSSTDM for C++/C, but don’t sweat it too much.
● Linters like flake8 can be very good for catching bugs as you write code.
● Consider using a formatter like black to automatically format how your code is split

across lines and so on, saving you the trouble and ensuring consistency.
● Readability is paramount. Code is read far more often than it is written.
● Use clear, explanatory variable names. E.g. num_galaxies, not n2.
● Classes should typically be a singular noun. E.g. GalaxyList, not Galaxies. It usually

helps make the code that uses that class more readable.
● Functions (and methods) should typically be a verb or verb phrase. Usually in the

imperative mood. E.g. calculate_coefficients(), not coefficients().
● Methods that return booleans should typically use appropriate helping verbs. E.g.

galaxy.has_spiral_arms() or image.is_contiguous(). In Python, these might be
properties rather than methods if appropriate.

● Attributes (or properties) are typically nouns (e.g. galaxy.shape, or
image.pixel_scale), but they can also be verb phrases if they return a boolean (e.g.
image.is_contiguous) as mentioned above.

● [Python-specific] Don’t hide significant calculations in a property. If it looks like
galaxy.shape, then that value should either already be stored somehow or be fairly
trivially calculable from existing stored values. If you need to run some complicated

4

https://pypi.org/
https://conda-forge.org/
https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/cppguide.html
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://developer.lsst.io/coding/cpp_style_guide.html
http://flake8.pycqa.org/
https://black.readthedocs.io

algorithm to calculate the quantity, give the user a clue about that by making it a
regular method and calling it e.g. calculate_shape() or measure_shape() so they
know to store the answer rather than maybe use galaxy.shape multiple times in a bit
of code.

● Don’t use obtuse shorthand. E.g., you probably should write out scipy.special, not
import it “as ssp” and then use ssp in the code. Other developers will probably not
understand the short version, especially if it is only used a handful of times in a given
file. (If it is all over the place in a given code base, then perhaps it is worth using the
shorthand.)

● The style should be reasonably consistent within the project you’re working on. It is
not necessary that your style conforms to other styles being used in DESC (although
if you don’t know what style to use, looking at other people’s code is a good way to
get a feel for good style). More important is for a given code base to be internally
fairly consistent.

● More experienced developers may often be able to provide style guidance as well.

Documentation
● Docstrings (or other similar user-oriented documentation) should fully describe

everything the user will need to understand to use your code.
● In-code comments should describe to a later developer (e.g., yourself in 2 years) how

your code works, where the algorithm comes from, etc.
● Good variable and function names can be self-documenting. E.g. num_galaxies

rather than n2, as mentioned above.
● Document the code as you go. Don’t plan to go back later to add documentation.
● In particular, writing a good docstring for every function as you code it will make

web-based API documentation easy to generate automatically, later - and a
README can help others in the collaboration start learning what you are doing so
they can help out.

● It is often helpful to try a first pass at the documentation before you’ve even written
any code. Often this will help crystallize aspects of the API design and help you write
better code that makes sense for how a user will want to work with it.

● Similarly, implementing complicated math should often start with a long in-code
comment explaining (to yourself!) how the math works that you will be trying to
implement. It makes the subsequent coding much easier and serves as a record of
the intended operation for future reference.

● If some code is implementing an equation in a paper, cite the paper (e.g., “This is
equation (7) from Dodelson et al, 2002.”) If it would be useful for the user to be aware
of the reference, e.g. in cases where an algorithm is re-implemented and attribution
needs to be given to its originators, make sure to also include this information in the
doc string, not just the inline code comments.

● If you are using a snippet of code from some other source, make sure to leave a
comment with the URL or some indication of where you got it. Further, make sure
your use is consistent with the license of the source code you copied. If you have
questions, ask!

5

● For Python, consider using Sphinx as the doc parser. For C++, doxygen is pretty
standard. But we don’t dictate either of these as any kind of requirement.

● Know your audience. There is always a trade-off between your individual coding
speed (important for being able to react to changing circumstances and constraints)
and the collaborative development of the code (important for overall development
speed, and collective understanding of the code). The documentation that you will
need for yourself when you look back in 6 weeks time may be different from the
documentation that a new DESC member needs now to be able to get up to speed
and start contributing. Being nimble as a group means reaching the right level of
documentation at the right time.

Commits
● Ideally, each commit should be a single atomic change in functionality. The new

code should:
○ include tests that the functionality change is correct;
○ include appropriate documentation of any new functionality;
○ pass the new tests as well as the rest of the test suite.

● This isn’t always possible of course -- you may discover a bug in the code after you
commit, or you might think of additional tests to add -- but it’s helpful to have this as a
goal. It greatly helps troubleshoot problems down the line.

● The commit message should briefly summarize the change you made. This
facilitates finding a relevant commit later (e.g., to revert later or to cherry-pick onto a
different branch) “Fix indexing bug in such-and-such module” is more helpful than
just “Fix bug”, etc.

● The git command “git add -p” is a great tool for selecting just some subset of the local
changes that you want to commit. And “git rebase -i” will let you combine new
changes with old commits if you discover that you missed something related to a
particular change. Mike Jarvis discussed these and other useful git commands in a
(non-recorded) hack week presentation (accessible only to DESC members).

● Another exception to the “atomic commit” ideal is if you don’t know how to fix a bug.
It is perfectly reasonable to commit something with the message “Tried to implement
XXX. Fails YYY test.” And then ping some other developer in the project and ask
them to help you figure out how to fix it.

Tests
● Some form of testing should always be done. However, not all aspects of the list

below are always relevant. Use common sense to determine which items are
important to ensure correctness of your code. (But be aware that your code reviewer
may ask for more - see sections below on code review.)

● Unit tests are good for testing small bits of code to check that each function does
what it is supposed to do.

● Regression tests may be helpful to make sure existing functionality is preserved in
the future through possible code refactoring.

● User interface tests check that the code behaves sensibly if the user does something
they shouldn’t do (e.g., gives bad inputs, forgets a parameter, etc.)

6

https://confluence.slac.stanford.edu/display/LSSTDESC/Git+workflow

● Functional tests check that the code produces correct outputs for a variety of inputs.
● If you can test some fancy, efficient algorithm against a more obviously correct (but

slower) algorithm, that’s a great test to include.
● If there are specific special cases where the answer can be known analytically or via

some other means, these are good functional tests as well.
● Think about edge cases. What might cause your code to fail? You should add tests

that these edge cases work correctly.
● Integration tests check that your class/function/etc. works correctly with other parts of

the overall code base.
● All of the above tests should be part of a test suite that is run regularly, ideally via a

continuous integration [CI] system like GitHub Actions.
● Code validation, where you run the new code on a large set of data or perform a long

calculation, is often important during development. The results should be made
available to the code reviewer, but you do not necessarily want to include this in your
continuous integration.

● If some kind of code validation was helpful, think whether a smaller/faster version of it
could reasonably be included in your CI test suite.

● Don’t forget demos and tutorial notebooks. These are good integration tests that
show how various parts of your code fit together (and can also be included in the CI
test suite!).

● See also Mike Jarvis’s DE School lesson on unit tests.

Contributing Your Work
● Beyond the initial setup phase of a project, contributions to collaborative code bases

should be made by pull request, so they can be reviewed by your collaborators.
● It is possible in GitHub to set up repositories with “branch protection”, which enforces

rules about not pushing directly to certain branches. Protecting the main branch
ensures that all code integration to main occurs via pull request. This can be a useful
guard against mistakes especially in repositories that include many people with write
privileges. Please note that some older repositories might have a “master” rather
than a main branch due to a change in nomenclature.

● A typical workflow for contributing work to a code base is as follows:
○ Make a branch for a new feature to be worked on. This typically corresponds

to a single GitHub issue.
○ Develop the feature (typically as a single developer, but occasionally working

as a small team).
○ Once you are ready for code review, submit a pull request to merge this

branch into the main (or other) branch. Pull requests should ideally be very
small, of order 500 lines of changed code or less. If your addition is too big,
break it up into smaller chunks.

○ One or more people will normally review the code (see below). Each software
development team will likely have a rule about how many reviewers are
needed; a model that ensures adequate scrutiny while not being too costly in
terms of time is to require one reviewer for bug fixes or simple feature
implementation, and 2 for major feature implementation or API changes.

7

https://lsstdesc.org/pages/DESchool.html#MikeJarvis

○ The code review will often involve requests for you to make some changes to
the code. Make those changes and iterate until the code reviewer(s) are
happy with them.

○ The code is then merged into the main branch -- either by you or by the lead
developer for the code project.

○ The branch on which the code was developed should typically be deleted
once the code has been merged to main

● Different groups may have different preferences for aspects of this procedure. If
you’re not sure what to do, just ask what the appropriate next step is.

● If you’re the only developer of a particular bit of code, the above workflow might not
make sense for you. However, still consider asking for code reviews occasionally.
E.g. once the code is ready for use in a DESC analysis or paper. Even for software
with just a single developer, the GitHub PR interface is handy for checking over
changes before merging to main.

Guidelines for Code Reviewers

Who should review?
● Often a project team has one or more lead developers. At least one of these people

should probably review every PR within a project.
● Less experienced developers should try to make a habit of reviewing code regularly.

Reading and evaluating other code is a great way to learn better coding practices.
● Occasionally, it can be useful to ask DESC members outside the project team to

review some code -- perhaps before a big software release. Ask on the Slack
#desc-software-help channel if you are interested.

● In the LSST DESC, it is standard practice that any collaboration member can request
code review from any of their fellow collaboration members. The understanding is
that while the requested reviewer will try their best, they may not be able to do the
review as requested due to time constraints.

● Most reviews should have a fast turnaround time. Only agree to review if you can do
so in a timely manner: if you cannot, please reply promptly to the PR thread
suggesting (and @ mentioning) some alternative reviewers.

● As a reviewer, if you realize that you don’t have the appropriate expertise to review a
particular section of the code, it is very helpful to @ mention someone who you think
might. (e.g. “I don’t quite follow the math here. @jdeveloper could you take a look
and make sure this seems ok?”) They can then just review that portion of the code,
rather than the whole PR.

Questions to ask
● Does the code do what it is apparently intended to do?
● Is there a test (or example) of the typical way that users will want to use this code?

8

● For complicated algorithms, are there tests that check correctness, say in a case
where the answer is known analytically, or comparing them to a more direct (but
slower) calculation?

● Are there tests of possibly problematic edge cases that might cause problems (e.g.,
RA values crossing from <360 to >0, nans in the input, singular matrices,
non-convergence of an algorithm, etc.)?

● Is the user documentation clear?
● Is there suitable guidance for any non-obvious input parameters that the user needs

to set?
● For complicated algorithms, are there suitable in-code comments to explain to a later

developer how the code is designed to work? [Note: the reviewer doesn’t necessarily
need to understand all details of an algorithm. A comment referencing a paper or
web page with more details is often sufficient.]

● Are classes, variables and functions well named (i.e., not confusing as to their
intended function within the code.

● Are there any obvious inefficiencies where simple code redesign could help? (e.g.,
memory allocations in an inner loop that could be pulled outside, for loops in Python
that could switch to list comprehension, the same file being opened multiple times,
etc.) [Note: don’t recommend code changes that make code less readable in order
to be more efficient. Unless this is known to be a tall pole worthy of extensive
optimization, readability matters more than efficiency!]

● Are there places in the code where the style differs significantly from other code in
the same file or project?

● Are there places where the style causes the code to be difficult to read or
understand?

● Do classes, variables, and function names follow the same style as others in the
file/project? E.g., CamelCase, mixedCase, lowercase_with_underscores, etc.

● Are there repeated blocks of code that would benefit from being pulled out into a
separate function? A good rule of thumb is that repeated blocks of code should only
be combined if

○ They have been repeated at least 2-3 times.
○ The purpose of the repeated sections of code is the same.

What happens after the review?
● Once the PR is approved, it is the developer’s job to merge the PR. This is to enable

them to take care of any modifications left optional by the reviewer, or to first issue
any remaining problems before merging (if they want to do things in this order).

● Occasionally a repo admin may merge an approved PR, if they are trying to get to a
new release, for example.

● If changes are requested, you can now work on them with your new collaborator,
your code reviewer. Generally speaking, repo admins and experienced contributors
will work together to resolve disputes.

● A common pattern when you think you are ready to merge a PR is to state a timeline
when you plan to merge. (e.g. “will merge this tomorrow afternoon unless I hear
otherwise”) This allows people who had wanted to review (or may currently be in the

9

process of reviewing) time to push back on this plan if they want more time to finish
their review.

Comprehensive Code Reviews
A typical code review is on a single pull request, covering a relatively modest set of changes
covering more or less a single topic, which are requested to be merged into the main branch.
Occasionally though, one may want to get someone (usually external to the development
team) to do a comprehensive code review of the whole API and overall design of the code
already on the main branch. This should be rare -- at most once per project probably, since
it is quite a lot of work. Ideally, an experienced developer with a lot of code design
experience will be involved in code design and reviews all along, so that this process
will not be needed.

● The focus of such a review should mostly be on high-level design, both in terms of
the user-directed API choices, and also how aspects of the implementation will
impact the efficiency and long-term maintainability. Comments on details are fine,
but should not be the primary focus.

● A good choice for an external reviewer may be someone who plans to be a heavy
user of the code, so will have a good perspective about the API decisions.

● For some projects, it may be helpful to get an expert developer who has some
experience with the efficiency implications of the design to review the data structures
and key algorithms, especially how the implementation will likely play out in typical
computer architectures where the code will be run.

● To be most effective, an API review should be done well in advance of a “1.0”
release, when the API is still being molded to some extent, but where there are
enough use cases already fleshed out that the code is beginning to be fairly mature.

● GitHub doesn’t enable line comments on the main repository, but one can trick it into
giving you line comments with the procedure in the “Comprehensive Code Review”
appendix (cf. e.g. the CCL review).

Further Reading
● Practical Lessons in Peer Code Review - Salsita Software blog
● Better Learning through Code Reviews - Capgemini Engineering blog
● Why code reviews matter (and actually save time!) - Atlassian Agile Coach
● 7 ways to uplevel your code review skills - Asana blog
● See also Mike Jarvis’s DE School lesson on code reviews.

Guidelines for Coding Teams

Things to think about
● Continuous code review makes final review before release easy, and is really

necessary for coding development carried out by teams.

10

https://github.com/LSSTDESC/CCL/pull/433
http://blog.salsitasoft.com/practical-lessons-in-peer-code-review/
https://capgemini.github.io/learning/better-learning-code-reviews/
https://www.atlassian.com/agile/code-reviews
https://blog.asana.com/2016/12/7-ways-to-uplevel-your-code-review-skills/
https://lsstdesc.org/pages/DESchool.html#MikeJarvis3

● Good documentation is not only important for enabling the existing set of users and
developers to develop the code base and do their science, but will also make it easy
for new people to contribute to your project.

● Try to be encouraging of new contributors. Helping them write good code will likely
be beneficial to the team in the long run. (Plus it’s just polite.)

● Using a good workflow engine (e.g. Pegasus or Parsl) can help streamline the
development. For instance, wlpipe and daxpipe development with Pegasus mostly
involve writing configuration files, rather than code, which significantly increases the
efficiency of the project.

● More generally, try to leverage other existing code as much as possible rather than
develop everything yourselves.

Versioning
● For the sake of simplifying communication and ensuring reproducibility of results, any

code that is used by people outside of the development team, or even used for
science results only by the dev team, should be versioned. This can be achieved with
the GitHub “release” mechanism, which is a wrapper for git tag.

● Use M.m.r versioning, where M is the major version, m is the minor version, and r is
the revision or patch. This is called Semantic Versioning.

● Normally, the initial development of a piece of code uses 0.x versions. During this
phase, it is acceptable for APIs to change between versions in
backwards-incompatible ways. Normally the user base during this period includes
just the developers and some select test users who are willing to deal with these
kinds of changes.

● Once you have code that you think is ready for a wider user base, you should
normally bump up to version 1.0. At this point the API should be kept more stable
and backwards compatible.

● Minor version updates (e.g. 1.2.3 -> 1.3.0) typically include new functionality, while as
much as possible trying not to break code that uses previous versions. If you’d like
to remove some functions, you should have them emit deprecation warnings, rather
than outright remove them.

● Major version updates (e.g. 1.3.0 -> 2.0.0) are where APIs are allowed to be
backwards incompatible. As much as possible, this should just be removing the
deprecated code, rather than springing a new change on your users. But sometimes,
that isn’t possible, and you just need to document the API change you made.

● Patch version updates (e.g. 2.0.0 -> 2.0.1) should be reserved for bug fixes. All the
APIs should be identical; you’ve just fixed some bug in the previous version.

● Consider using Versioneer to help keep track of versions automatically. It makes
sure the version reported by your code matches the tagged release that appears on
GitHub. It can also give a version for runs off of main (not recommended!) when
necessary.

11

https://github.com/pegasus-isi
https://github.com/Parsl/
https://semver.org/
https://github.com/warner/python-versioneer

Appendix

Other References

Mike Jarvis discussed an early version of this document at an LSST DESC Hack/Sprint
Week (link accessible to DESC members) in December, 2017. See the video of that
presentation.

Mike Jarvis presented LSST DESC Dark Energy School lessons on unit tests in July, 2017
and code reviews in February, 2018. Videos of these and other software-related Dark
Energy School lessons are available here.

The DESC CI2 study group report has some early recommendations (circa 2016) for DESC
software development practices - largely superseded by these guidelines and the DESC
software policy, but available for reference here (link accessible to DESC members)

Comprehensive code review process
Below are the steps to force GitHub to allow you to carry out a comprehensive code review
of an entire code base. In the instructions below, all branch names are in italics.

● Go back to the very first commit in the repo. Hopefully just with something negligible
like a Read.me file.

● Make a branch off of that called empty.
● Copy over from the main branch anything that you don't want to review. E.g. devel

directory, installation instructions, license, etc. Whatever you don’t want to clutter the
code lines you will be reviewing. The git syntax for this is, e.g., `git checkout main
devel` to copy over the whole devel directory. Commit these files.

● Go back to the current main and make a branch off of that called review.
● Merge from empty into review. (This should be a zero line merge, but is necessary to

get the git history right for those non-code files.)
● Make a pull request from review into empty in GitHub.
● Add line comments in GitHub about the current version of the code.
● People can make changes directly into the review branch responding to the code

review comments. Or do things in separate PRs if preferred. (CCL took the latter
approach.)

● Once you are done, any changes on the review branch can be merged into main.
Just switch the target branch of the PR on GitHub to main rather than empty, and
you'll be able to see the new changes. This might also let you catch bugs in the new
changed code. Then merge into main.

12

https://confluence.slac.stanford.edu/display/LSSTDESC/Sprint+Week%3A+Dec+4-8+2017+-+Argonne+National+Lab
https://confluence.slac.stanford.edu/display/LSSTDESC/Sprint+Week%3A+Dec+4-8+2017+-+Argonne+National+Lab
https://www.youtube.com/watch?v=ZI1DpwEaqjs&feature=youtu.be
https://lsstdesc.org/pages/DESchool.html
https://lsstdesc.org/assets/pdf/policies/LSST_DESC_Software_Policy_Nov2021.pdf
https://lsstdesc.org/assets/pdf/policies/LSST_DESC_Software_Policy_Nov2021.pdf
https://confluence.slac.stanford.edu/display/LSSTDESC/Operations+Plan?preview=%2F215844835%2F215844836%2Fci2.pdf

